Abstract
Introduction
Methods
Results
Conclusions
Keywords
1. Introduction
2. Methods and Materials
2.1 Sample procurement and assessment
2.2 Whole genome sequencing
Batch 1
Batch 2
2.3 Data pre-processing and quality control
2.4 SNV and Indel Prioritization
2.5 Copy Number Variant Calling
3. Results
3.1 WGS Data
Pedigree | Total | In-Family | Marry-In | |
---|---|---|---|---|
SCZ | UN | |||
K1480 | 5 | 4 | - | 1 |
K1494 | 5 | 4 | - | 1 |
K1501 | 7 | 4 | 2 | 1 |
K1524 | 4 | 4 | - | - |
K1527 | 6 | 5 | - | 1 |
K1546 | 8 | 5 | 2 | 1 |
Total | 35 | 26 | 4 | 5 |
3.2 Prioritized SNVs
Description | Variants | |
---|---|---|
Quality control filters | 11,509,434 | |
Family-private variants | 3,069,960 | |
Co-segregation pattern | Full | Reduced |
57,253 | 172,748 | |
In coding sequence | 515 | 1,904 |
Ultra-rare in gnomAD | 50 | 210 |
Functional relevance | 0 | 10 |
LoF intolerant gene | 0 | 3 |
Pedigree | Chr | Position | Variant | Gene | Exon | HGVSp | MAC | MPC | CADD | SIFT | PolyPhen2 |
---|---|---|---|---|---|---|---|---|---|---|---|
K1546 | 3 | 10360021 | G>A | ATP2B2 | 13/23 | R588C | 1 | 2.23 | 31.0 | D | D |
K1524 | 10 | 99610923 | T>C | SLC25A28 | 4/4 | I341V | 0 | 2.11 | 25.6 | D | D |
K1494 | 19 | 42232651 | A>G | GSK3A | 9/11 | I377T | 0 | 2.39 | 26.9 | D | D |

3.3 Schizophrenia-associated CNVs
4. Discussion
Gene | Constraint | SCHEMA (Class II) | |||
---|---|---|---|---|---|
pLI | mis_Z | LOEUF | OR | p-value | |
ATP2B2 | 1.00 | 4.55 | 0.15 | 1.920 | 0.000719 |
SLC25A28 | 0.93 | 2.92 | 0.37 | 0.617 | 0.744000 |
GSK3A | 1.00 | 3.22 | 0.13 | 0.830 | 0.835000 |
5 Acknowledgements
Supplementary Material
7 References
- 11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study).Lancet. 2009; 374: 620-627
Ripke S, Walters JT, O'Donovan MC (2020): Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv.2020.2009.2012.20192922.
- Copy number variation and neuropsychiatric illness.Current opinion in genetics & development. 2021; 68: 57-63
- CNVs in neuropsychiatric disorders.Human molecular genetics. 2015; 24: R45-49
Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. (2020): Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. medRxiv.2020.2009.2018.20192815.
- Recent ultra-rare inherited variants implicate new autism candidate risk genes.Nature genetics. 2021; 53: 1125-1134
- A diagnostic interview: the schedule for affective disorders and schizophrenia.Archives of general psychiatry. 1978; 35: 837-844
- Research diagnostic criteria: rationale and reliability.Archives of general psychiatry. 1978; 35: 773-782
- The Sequence Alignment/Map format and SAMtools.Bioinformatics. 2009; 25: 2078-2079
Li H (2013): Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. (2013): From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current protocols in bioinformatics. 43:11.10.11-33.
- Twelve years of SAMtools and BCFtools.Gigascience. 2021; 10
- De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes.European journal of human genetics : EJHG. 2019;
- Who's Who? Detecting and Resolving Sample Anomalies in Human DNA Sequencing Studies with Peddy.American journal of human genetics. 2017; 100: 406-413
- A global reference for human genetic variation.Nature. 2015; 526: 68-74
- XPAT: a toolkit to conduct cross-platform association studies with heterogeneous sequencing datasets.Nucleic acids research. 2018; 46: e32
- Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift.Front Genet. 2012; 3: 35
- Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.Nucleic acids research. 2016; 44: D733-745
- The UCSC Genome Browser database: 2019 update.Nucleic acids research. 2019; 47: D853-d858
- The Ensembl Variant Effect Predictor.Genome biology. 2016; 17: 122
- Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes.bioRxiv. 2019; 531210
- dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs.Genome medicine. 2020; 12: 103
Samocha KE, Kosmicki JA, Karczewski KJ, O’Donnell-Luria AH, Pierce-Hoffman E, MacArthur DG, et al. (2017): Regional missense constraint improves variant deleteriousness prediction. bioRxiv.148353.
- SIFT missense predictions for genomes.Nat Protoc. 2016; 11: 1-9
Adzhubei I, Jordan DM, Sunyaev SR (2013): Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. Chapter 7:Unit7.20.
- CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores.Genome medicine. 2021; 13: 31
- Analysis of protein-coding genetic variation in 60,706 humans.Nature. 2016; 536: 285-291
- A framework for the interpretation of de novo mutation in human disease.Nature genetics. 2014; 46: 944-950
- The mutational constraint spectrum quantified from variation in 141,456 humans.Nature. 2020; 581: 434-443
- CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing.Genome research. 2011; 21: 974-984
- Using ERDS to infer copy-number variants in high-coverage genomes.American journal of human genetics. 2012; 91: 408-421
- LUMPY: a probabilistic framework for structural variant discovery.Genome biology. 2014; 15: R84
- Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications.Bioinformatics. 2016; 32: 1220-1222
- A Comprehensive Workflow for Read Depth-Based Identification of Copy-Number Variation from Whole-Genome Sequence Data.American journal of human genetics. 2018; 102: 142-155
(2013): The Genotype-Tissue Expression (GTEx) project. Nature genetics. 45:580-585.
(2017): Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 8:21.
- Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder.Cell Rep. 2018; 22: 734-747
- Common and Rare Genetic Risk Factors Converge in Protein Interaction Networks Underlying Schizophrenia.Front Genet. 2018; 9: 434
- The association between Darier disease, bipolar disorder, and schizophrenia revisited: a population-based family study.Bipolar disorders. 2015; 17: 340-344
- Review of lithium effects on brain and blood.Cell Transplant. 2009; 18: 951-975
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
6 Disclosures
The authors report no biomedical financial interests or potential conflicts of interest.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy