ABSTRACT
Background
Methods
Results
Conclusions
Keywords
Introduction
- Esposito R.
- Cieri F.
- Chiacchiaretta P.
- Cera N.
- Lauriola M.
- Di Giannantonio M.
- et al.
- Shappell H.M.
- Duffy K.A.
- Rosch K.S.
- Pekar J.J.
- Mostofsky S.H.
- Lindquist M.A.
- Cohen J.R.
- Shappell H.M.
- Duffy K.A.
- Rosch K.S.
- Pekar J.J.
- Mostofsky S.H.
- Lindquist M.A.
- Cohen J.R.
Methods
Participants
Total Participants, N | 8446 |
---|---|
Sex, N (%) | |
Female | 4201(49.75) |
Male | 4245(50.25) |
Age, mean (SD) | 9.94(0.63) |
Parent report of child’s race/ethnicity, N (%) | |
White | 4474(52.97) |
Black | 1202(14.23) |
Hispanic | 1698(20.11) |
Asian | 164(1.94) |
Other | 906(10.73) |
Income Category, N (%) | |
< 50k | 2219(26.28) |
50-99k | 2232(26.43) |
100k+ | 3321(39.31) |
Refuse to report income | 332(3.93) |
Don't know income | 340(4.03) |
Parental education in years, mean (SD) | 16.67(2.67) |
CBCL Attention t-score, mean (SD) | 53.73(6.04) |
CBCL Externalizing t-score, mean (SD) | 45.57(10.24) |
Mean Framewise Displacement (FD), mean (SD) | 0.22(2.34e-05) |
Measures
Neuropsychological Test Battery
Imaging Procedure: Acquisition
Imaging Procedure: Processing
Attention Problems and Externalizing Symptoms
Statistical Analyses
Results
DMN-DAN Anticorrelation and Behavioral variability

Flanker IIV | DCCS IIV | Proc Speed IIV | ||||
---|---|---|---|---|---|---|
Predictors | std. Beta | std. CI | std. Beta | std. CI | std. Beta | std. CI |
DMN-DAN Anticorrelation | 0.04 ∗∗ | 0.02 – 0.06 | 0.05 ∗∗∗ | 0.02 – 0.07 | 0.03 ∗ | 0.01 – 0.05 |
Age | -0.09 ∗∗∗ | -0.11 – -0.07 | -0.13 ∗∗∗ | -0.15 – -0.11 | -0.08 ∗∗∗ | -0.11 – -0.06 |
Sex | 0.02 | -0.02 – 0.06 | 0.07 ∗∗ | 0.02 – 0.11 | 0.12 ∗∗∗ | 0.07 – 0.16 |
Mean FD | 0.10 ∗∗∗ | 0.07 – 0.12 | 0.11 ∗∗∗ | 0.09 – 0.13 | 0.07 ∗∗∗ | 0.05 – 0.09 |
50-99k | -0.23 ∗∗∗ | -0.29 – -0.17 | -0.30 ∗∗∗ | -0.36 – -0.23 | -0.11 ∗∗∗ | -0.17 – -0.04 |
100k+ | -0.34 ∗∗∗ | -0.40 – -0.28 | -0.35 ∗∗∗ | -0.41 – -0.29 | -0.15 ∗∗∗ | -0.22 – -0.09 |
Non-White | 0.19 ∗∗∗ | 0.13 – 0.24 | 0.17 ∗∗∗ | 0.12 – 0.22 | 0.12 ∗∗∗ | 0.07 – 0.18 |
Parental Education | -0.02 | -0.04 – 0.00 | -0.02 | -0.04 – 0.01 | -0.00 | -0.03 – 0.02 |
Age and Behavioral Variability
Behavioral and Neural Associations with Attentional and Externalizing Symptoms at Baseline
CBCL Attention BV | CBCL Attention BV | CBCL Attention BV | CBCL Attention BV | |||||
---|---|---|---|---|---|---|---|---|
Predictors | std. Beta | std. CI | std. Beta | std. CI | std. Beta | std. CI | std. Beta | std. CI |
Flanker IIV | 0.12 ∗∗∗ | 0.10 – 0.14 | ||||||
DCCS IIV | 0.13 ∗∗∗ | 0.11 – 0.15 | ||||||
Proc Speed IIV | 0.11 ∗∗∗ | 0.09 – 0.13 | ||||||
DMN-DAN Anticorrelation | 0.07 ∗∗∗ | 0.05 – 0.09 | ||||||
Mean FD | 0.05 ∗∗∗ | 0.02 – 0.07 | ||||||
Age | 0.01 | -0.01 – 0.03 | 0.01 | -0.01 – 0.03 | 0.00 | -0.01 – 0.02 | 0.01 | -0.02 – 0.03 |
Sex | 0.11 ∗∗∗ | 0.07 – 0.15 | 0.10 ∗∗∗ | 0.06 – 0.14 | 0.10 ∗∗∗ | 0.06 – 0.14 | 0.06 ∗∗ | 0.02 – 0.11 |
50-99k | -0.15 ∗∗∗ | -0.21 – -0.10 | -0.14 ∗∗∗ | -0.20 – -0.08 | -0.17 ∗∗∗ | -0.23 – -0.12 | -0.17 ∗∗∗ | -0.23 – -0.11 |
100k+ | -0.25 ∗∗∗ | -0.30 – -0.19 | -0.24 ∗∗∗ | -0.30 – -0.19 | -0.28 ∗∗∗ | -0.33 – -0.22 | -0.28 ∗∗∗ | -0.34 – -0.22 |
Non-White | -0.01 | -0.05 – 0.04 | -0.01 | -0.06 – 0.03 | -0.00 | -0.05 – 0.04 | -0.01 | -0.06 – 0.04 |
Parental Education | -0.01 | -0.03 – 0.01 | -0.01 | -0.03 – 0.01 | -0.01 | -0.03 – 0.01 |
Prospective Behavioral and Neural Associations with Attentional Symptoms, 1-3 years later
CBCL Attention Y1 | CBCL Attention Y2 | CBCL Attention Y3 | ||||
---|---|---|---|---|---|---|
Predictors | std. Beta | std. CI | std. Beta | std. CI | std. Beta | std. CI |
(Intercept) | 0.05 ∗ | 0.01 – 0.09 | 0.08 ∗∗ | 0.02 – 0.13 | 0.08 ∗ | 0.01 – 0.15 |
Flanker IIV | 0.02 ∗∗ | 0.01 – 0.03 | 0.03 ∗∗ | 0.01 – 0.04 | 0.03 ∗ | 0.01 – 0.05 |
Baseline CBCL Attention | 0.73 ∗∗∗ | 0.71 – 0.74 | 0.68 ∗∗∗ | 0.66 – 0.70 | 0.61 ∗∗∗ | 0.59 – 0.63 |
Age | -0.00 | -0.02 – 0.01 | 0.01 | -0.01 – 0.03 | 0.01 | -0.01 – 0.03 |
Sex | 0.01 | -0.02 – 0.04 | -0.01 | -0.05 – 0.02 | -0.06 ∗ | -0.10 – -0.01 |
50-99k | -0.02 | -0.06 – 0.02 | -0.06 ∗ | -0.10 – -0.01 | -0.04 | -0.10 – 0.03 |
100k+ | -0.07 ∗∗∗ | -0.11 – -0.04 | -0.06 ∗ | -0.11 – -0.01 | -0.06 ∗ | -0.13 – -0.00 |
Non-White | -0.04 ∗ | -0.07 – -0.01 | -0.07 ∗∗∗ | -0.11 – -0.03 | -0.05 | -0.10 – 0.00 |
Parental Education | 0.00 | -0.01 – 0.02 | 0.00 | -0.02 – 0.02 | 0.01 | -0.01 – 0.04 |
Prospective Behavioral and Neural Associations with Externalizing Symptoms, 1-3 years later
Ex-Gaussian Distribution Modeling
Specificity and Robustness Analyses at Baseline
Discussion
- Sidlauskaite J.
- Sonuga-Barke E.
- Roeyers H.
- Wiersema J.R.
Limitations and Future Directions
Uncited reference
Acknowledgements and Disclosures
Supplementary Material
References
- Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach.Acta Psychol. 2000; 104: 167-190
- Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes.Nat. Rev. Neurosci. 2002; 3: 617-628
- Reaction time variability in ADHD: a meta-analytic review of 319 studies.Clin. Psychol. Rev. 2013; 33: 795-811
- Intra-individual variability in behavior: Links to brain structure, neurotransmission and neuronal activity.Trends Neurosci. 2006; 29: 474-480
- Inconsistency in reaction time across the life span.Neuropsychology. 2005; 19: 88-96
- Becoming consistent: Developmental reductions in intraindividual variability in reaction time are related to white matter integrity.J. Neurosci. 2012; 32: 972-982
- Sex differences in reaction time mean and intraindividual variability across the life span.Dev. Psychol. 2012; 48: 1262-1276
- Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies.Mol. Psychiatry. 2021;
- Resting-state brain networks: Literature review and clinical applications.Neurol. Sci. 2011; 32: 773-785
- Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis.Neurosci. Biobehav. Rev. 2007; 31: 977-986
- Competition between functional brain networks mediates behavioral variability.Neuroimage. 2008; 39: 527-537
- Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.Neuroimage. 2017; 155: 271-290
- Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies.Am. J. Psychiatry. 2012; 169: 1038-1055
- Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder.Biol. Psychiatry. 2008; 63: 332-337
- A default mode of brain function.Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 676-682
- Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 253-258
- The human brain is intrinsically organized into dynamic, anticorrelated functional networks.Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 9673-9678
- Situating the default-mode network along a principal gradient of macroscale cortical organization.Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 12574-12579
- Control of goal-directed and stimulus-driven attention in the brain.Nat. Rev. Neurosci. 2002; 3: 201-215
- The reorienting system of the human brain: From environment to theory of mind.Neuron. 2008; 58: 306-324
- The activation of attentional networks.Neuroimage. 2005; 26: 471-479
- Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis.Hum. Brain Mapp. 2005; 26: 15-29
- Anticorrelations in resting state networks without global signal regression.Neuroimage. 2012; 59: 1420-1428
- Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: Comparison among young adults, healthy elders and mild cognitive impairment patients.Brain Imaging Behav. 2018; 12: 127-141
- The brain’s default mode network.Annu. Rev. Neurosci. 2015; 38: 433-447
- The neural bases of momentary lapses in attention.Nat. Neurosci. 2006; 9: 971-978
- A lack of default network suppression is linked to increased distractibility in ADHD.Brain Res. 2009; 1273: 114-128
- Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder.Brain Res. 2010; 1322: 134-143
- Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis.Neurosci. Biobehav. Rev. 2007; 31: 977-986
- A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging.J. Cogn. Neurosci. 2003; 15: 394-408
- Transient and linearly graded deactivation of the human default-mode network by a visual detection task.Neuroimage. 2008; 41: 100-112
- What have we really learned from functional connectivity in clinical populations?.Neuroimage. 2021; 242118466
- The synchronization within and interaction between the default and dorsal attention networks in early infancy.Cereb. Cortex. 2013; 23: 594-603
- Selective development of anticorrelated networks in the intrinsic functional organization of the human brain.Journal of Cogn. Neurosci. 2014; 26: 501-513
- Default network modulation and large-scale network interactivity in healthy young and old adults.Cereb. Cortex. 2012; 22: 2610-2621
- Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation.Cereb. Cortex. 2007; 17: 766-777
- Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually.Hum. Brain Mapp. 2013; 34: 3280-3298
- Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception.Proc. Natl. Acad. Sci. U. S. A. 2014; 111: E417-E425
- Ongoing dynamics in large-scale functional connectivity predict perception.Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 8463-8468
- Connectivity supporting attention in children with attention deficit hyperactivity disorder.Neuroimage Clin. 2015; 7: 68-81
- Investigation of Psychiatric and Neuropsychological Correlates of Default Mode Network and Dorsal Attention Network Anticorrelation in Children.Cereb. Cortex. 2020; 30: 6083-6096
- Resting-state network dysconnectivity in ADHD: A system-neuroscience-based meta-analysis.World J. Biol. Psychiatry. 2020; 21: 662-672
- Tracking whole-brain connectivity dynamics in the resting state.Cereb. Cortex. 2014; 24: 663-676
- Children with attention-deficit/hyperactivity disorder spend more time in hyperconnected network states and less time in segregated network states as revealed by dynamic connectivity analysis.Neuroimage. 2021; 229117753
- Effects of Methylphenidate on Default-Mode Network/Task-Positive Network Synchronization in Children With ADHD.J. Atten. Disord. 2017; 21: 1208-1220
Tervo-Clemmens, B., Calabro, F. J., Parr, A. C., Fedor, J., Foran, W., & Luna, B. (2022). A Canonical Trajectory of Executive Function Maturation During the Transition from Adolescence to Adulthood. psyRvix.
- Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology.Neuroimage. 2018; 169: 395-406
- Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: A cross-sectional US population-based study.The Lancet Psychiatry. 2022; 9: 222-231
- Capturing the dynamics of response variability in the brain in ADHD.Neuroimage Clin. 2015; 7: 132-141
- Intra-individual variability in ADHD, autism spectrum disorders and Tourette’s syndrome.Neuropsychologia. 2008; 46: 3030-3041
- Reaction time distribution analysis of neuropsychological performance in an ADHD sample.Child Neuropsychol. 2006; 12: 125-140
- Revisiting inhibitory control across the life span: Insights from the ex-Gaussian distribution.Dev. Neuropsychol. 2006; 29: 447-458
- Attentional control and self-regulation.Handbook of Self-Regulation: Research, Theory, and Applications. 2004; 2: 284-299
- Multidisciplinary perspectives on attention and the development of self-regulation.Prog. Neurobiol. 2007; 82: 256-286
- Toward a physical basis of attention and self regulation.Phys. Life Rev. 2009; 6: 103-120
- Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery.Dev. Cogn. Neurosci. 2018; 32: 67-79
- Identifying reproducible individual differences in childhood functional brain networks: An ABCD study.Dev. Cogn. Neurosci. 2019; 40100706
- Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.Neuroimage. 2012; 59: 2142-2154
- Contributions from resting state functional connectivity and familial risk to early adolescent-onset MDD: Results from the Adolescent Brain Cognitive Development study.J. Affect. Disord. 2021; 287: 229-239
- II. NIH Toolbox Cognition Battery (CB): Measuring executive function and attention.Monogr. Soc. Res. Child Dev. 2013; 78: 16-33
- VI. NIH Toolbox Cognition Battery (CB): Measuring processing speed.Monogr. Soc. Res. Child Dev. 2013; 78: 88-102
- Age-related changes and longitudinal stability of individual differences in ABCD Neurocognition measures.Dev. Cogn. Neurosci. 2022; 54101078
- The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.Dev. Cogn. Neurosci. 2018; 32: 43-54
- Recruiting the ABCD sample: Design considerations and procedures.Dev. Cogn. Neurosci. 2018; 32: 16-22
- Image processing and analysis methods for the Adolescent Brain Cognitive Development Study.Neuroimage. 2019; 202116091
- Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations.Cereb. Cortex. 2016; 26: 288-303
Achenbach, T. M. The Child Behavior Checklist and related instruments. The Use of Psychological Testing for Treatment Planning and Outcomes Assessment., 2nd Ed., 2(1999), 429–466.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using lme4.
- What does the retrosplenial cortex do?.Nat. Rev. Neurosci. 2009; 10: 792-802
- Opportunities and limitations of intrinsic functional connectivity MRI.Nat. Neurosci. 2013; 16: 832-837
- A dimensional approach to developmental psychopathology.Int. J. Methods Psychiatr. Res. 2007; 16: S16-23
- Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder.Biol. Psychiatry. 2012; 71: 434-442
- Heterogeneity and Subtyping in Attention-Deficit/Hyperactivity Disorder—Considerations for Emerging Research Using Person-Centered Computational Approaches.Biological Psychiatry. 2020; 88: 103-110
- An Integrated Analysis of Neural Network Correlates of Categorical and Dimensional Models of Attention-Deficit/Hyperactivity Disorder.Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 472-483
- Reaction time variability in ADHD: a review.Neurotherapeutics. 2012; 9: 500-508
- Neurocognitive Predictors of ADHD Outcome: A 6-Year Follow-up Study.J. Abnorm. Child Psychol. 2017; 45: 261-272
- Neuropsychological deficits in preschool as predictors of ADHD symptoms and academic achievement in late adolescence.Child Neuropsychol. 2017; 23: 111-128
- Early intervention in psychosis: Concepts, evidence and future directions.World Psychiatry. 2008; 7: 148-156
- Early intervention in psychosis: Obvious, effective, overdue.J. Nerv. Ment. Dis. 2015; 203: 310-318
- Cost-effectiveness of early intervention in psychosis: Systematic review.Br. J. Psychiatry. 2019; 215: 388-394
- Counterpoint. Early intervention for psychosis risk syndromes: Minimizing risk and maximizing benefit.Schizophr. Res. 2021; 227: 10-17
- Early intervention in psychosis: From clinical intervention to health system implementation.Early Interv. Psychiatry. 2018; 12: 757-764
- Early Intervention in Psychosis in Young People: A Population and Public Health Perspective.Am. J. Public Health. 2019; 109: S181-S184
- Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: A resting-state study of attention, default mode and salience network connectivity.Eur. Arch. Psychiatry Clin. Neurosci. 2016; 266: 349-357
- Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood.JAMA Psychiatry. 2013; 70: 1329-1337
- Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors.Neuroimage. 2019; 197: 212-223
- Functional connectivity predicts changes in attention observed across minutes, days, and months.Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 3797-3807
- Methods to detect, characterize, and remove motion artifact in resting state fMRI.Neuroimage. 2014; 84: 320-341
- The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced?.Neuroimage. 2009; 44: 893-905
- The global signal and observed anticorrelated resting state brain networks.J. Neurophysiol. 2009; 101: 3270-3283
- Investigations into resting-state connectivity using independent component analysis.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005; 360: 1001-1013
- Effects of model-based physiological noise correction on default mode network anti-correlations and correlations.Neuroimage. 2009; 47: 1448-1459
Nomi, J. S., Bzdok, D., Li, J., Bolt, T., Kornfeld, S., Goodman, Z. T., et al. (2022). Global signal topography in the human brain differs systematically across the lifespan (p. 2022.07.27.501804). bioRxiv.
- Controversies and current progress on large-scale brain network nomenclature from OHBM WHATNET: Workgroup for HArmonized Taxonomy of NETworks.OSF Preprints. 2022;
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
The authors report no biomedical financial interests or potential conflicts of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy